

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

Previous Semester Examination December 2022

Program: B.Tech. Mechanical Engineering 7 . 4. Tell Duration: 03 Hrs

Course Code: PC-BTM612

Maximum Points: Maximum Points: 100

Semester: VI Course Name: Machine Design

Notes: 1. Solve any FIVE questions.

2. Each question carries equal marks.

3. Assume suitable data wherever necessary and justify the same.

4. Use of Machine Design Data Book by V. B. Bhandari is permitted.

Q.No.	Questions	Points	СО	BL	PI
5	a) Describe Machinability and Castability properties of engineering materials.b) Give the designation of steel used for sprockets and				
	Railway coaches. c) The tolerance of a shaft and bearing are H8/g7. If the nominal size of the shaft is 50 mm, determine the limits of dimensions of shaft and bearing. What is the type of fit?				
	d) Explain the terms CLA and RMS.				
_	e) List the ergonomic considerations to be taken into	20	1	3	1
1	account while designing a component	20	1	3	1
	Design a cotter joint for the transmission of 25 KN tensile load. Allowable stress for all the three components, i.e.,				
	load. Allowable stress for all the times components, i.e.,			ļ	
^	socket, spigot and cotter may be taken as follows: $\sigma_t = 50$ N/mm ² , $\sigma_c = 120$ N/mm ² , $\tau = 40$ N/mm ² .	20	1	1,2	2
2	N/mm, $\sigma_c = 120$ N/mm, $1 - 40$ N/mm.	20	 	1,2	
	a) Give practical example of high cycle fatigue.b) Explain fluctuating stress. Draw a stress time curve for fluctuating stress.	05			
	c) A solid circular shaft, 15 mm in diameter, is subjected to torsional shear stress, which varies from 0 to 35 N/mm2 and at the same time, is subjected to an axial stress that varies from -15 to +30 N/mm2. The	05			
	frequency of variation of these stresses is equal to the				
	shaft speed. The shaft is made of steel FeE 400 (Sut = 540 N/mm ² and Syt = 400 N/mm ²) and the corrected				
	endurance limit of the shaft is 200 N/mm ² . Determine	10	1	3	3
3	the factor of safety.	10	1 1		

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Previous Semester Examination December 2022

6	a) Select a belt from Dunlop high speed for power transmission of 11 KW from motor pulley running at 1440 rpm to machine pulley at 480 rpm. Centre distance between the pulleys is 2.4 m. Velocity of the belt can be taken from 14-16 m/s. Service factor as 1.2. Power		4	2,3	6	
5	 a) A semi elliptical carriage spring for suspension in automobile has 3 extra full length leaves and 10 graduated length leaves, including the master leaf. The centre to centre distance between the two eyes of the spring is 1.1 m. Maximum force on the spring is 80 KN. For each leaf, b/t = 6. E for leaf material = 207 N/mm2. Leaves are pre stressed in such a way that when maximum force is applied, the stress in all leaves is 500 N/mm2. Determine: (a) b and t, (b) initial nip, and (c) pre load required to close the nip. b) A closed coil helical extension spring needs to be designed, for a spring balance with a capacity of 196.2 N. The spring index is to be taken as 8. Choose a suitable material and take the maximum allowable shear stress as 50 % of the ultimate tensile strength of the material. Give the specifications of the spring and make a simple sketch of the spring. a) Select a belt from Dunlop high speed for power 	10	3	2,3	5	
4	A pinion is the integral with the stepped shaft as shown in figure, and a gear is keyed to the shaft. The shaft is mounted on the bearings, B1 and B2, as shown in figure. The tooth loads on pinion and gear are in the same plane. The tooth load on pinion is 4.8 KN, and the tooth load on gear is 3.6 KN. The torque transmitted is 400 Nm. Determine the diameter of the shaft at the bearings if oyt = 360 MPa and FOS = 3. E = 205 X 103 KN/mm, and G = 80 KN/mm2. Take Kb = 2.0 and Kt = 1.5.		1	3	4	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Previous Semester Examination December 2022

	transmission from high speed belt is 0.0118 KW per mm width per ply at V = 5 m/s. Take open belt drive system.	04		1	
ļ	b) Explain the procedure for selection of a standard V belt.c) What is polygon effect in chain drive? How this effect is minimized?	04			
	a) A bracket is connected to a channel in a structure through 6 rivets. If the eccentric load on the bracket is P=12 KN, and if maximum shear stress is not to exceed 100 MPa in any rivet, what is the size of the rivet? b) A 150 x 100 x 12.5 angle is welded on a steel gusset plate by means of two parallel fillet welds along the edges of length 150 mm. The angle is subjected to a tensile load of 350 KN. Determine the lengths of the weld required, if the load is applied with heavy shock. Assume suitable shear stress value.	10			
7	c) Determine the tensile stress area of M16 X 1.5 bolt.	05	2	3	7

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

PREVIOUS SEM EXAM	c-2022
D ATE: 29-12-2022	SESSION:Afternoon
Class: Third Year B. Tech.in Machanical Engineering	Semester : VI
Course Name& Code-Manufacturing Planning and Control	PC-BTM605
Total Points 100	Time Allotted : 3hour
NB. 1.Que 1 is compulsory 2.Solve any 4 questions from remaining.	MININ
3.Assume Suitable Cata wherever required 4 ND table are permitted.	

). 00	Question Statement	Points	Module	СО
)1	For the company manufacturing packaged drinking water, explore the applications of various principles, methodologies, tools and techniques of the Manufacturing Planning and control. Answer should include 1. Market Survey and Forecasting 2. Capacity Planning 3. Manufacturing Requirement Planning 4. Material Requirement Planning 5. Master Production Scheduling 6. Quality Control, Quality Assurance 7. Use of JIT / Lean Practices 8. Use of Lean Six Sigma practices 9. Use of Simulation for Inventory control	20	M1, M2, M3, M4, M5, M6,	CO
)2A	A firm produces three different products P1, P2 and P3. Each product needs to be processed through two departments, A and B.	10	M6	CO
	Department A has three machine A ₁ A ₂ and A ₃ while B has two Machine B ₁ , B ₂ .			
	Product 1 can be manufactured on any type of A and B machines.			
	Product 2 can be manufactured on A machine and Only on B ₂ of B type machines.			
	Product 3 can be manufactured on machines A ₂ of type A and B ₂ of type B. Time taken to manufactured one unit of each of product on each type of machine is given below.			and the second s
	Formulate the L.P. model to maximize the profit.			

			duct			Ti	me	Cos	st/week			
		F/1		P2	P3	pe	vailable er Week 1inute)	at fi cap	acity			
A_1		5		5	-	45	500	270				
A ₂	<u> </u>	6		8	10	95	5000	520	•			
A2,	- 	6		8	-	75	500	450)			
731		7		-	-	35	500	220				
$\frac{1}{B_2}$		4		B	8	51	100	310				
Mat	terial				<u> </u>	<u></u>		<u>. !</u>				
Cos (Rs.		0.4	5	0.55	0.65						A STATE OF THE STA	
Sale Price (Rs.	e	1.5	0	1.80	2.70							
JOP,					10	10	Е	F	G			
			A 	В	С	D						
Mac	chine N	И1	17	16	15	13	15	17	16			
<u>ا لــــــــــــــــــــــــــــــــــــ</u>	hine N		5	8	5	8	7	8	3			ļ
Mac	chine N	41 3	8	14	13	11	12	14	12			
Find N	∕Iin To	tal l	Elapso	ed time.	Expla	in JIT 1	principle	s in d	etail.			
E and distan assign	l one o ce het iment	defic twee of tr	oit tru n the wok f	ck in e	each of in Kn ies in s	the ci is sh sumplus	ities 1,2 nown in to citie	,3,4,5 the r	A,B,C,D a and 6. T natrix. F eficit so t	he ind	M7	CO2
	s 1		12		3	4		5	6			
Citie			, ,	12	18	21		17	18			
A		4.						21	16			4
	1	4. 2 3	2	20	21	19)	21 15	16 14			ţ

1	D. J. Minn	P1	P2	P3	P4	Product				CO2
	Production facility Pi/ City demand Di	PI	r2	rs		Demand			+	
	D1	23	25	19	29	27				
	D2	17	18	23	14	16				
	D3	25	15	28	18	20				
	D4	20	24	18	17	19				
	D5	26	19	25	20,	12				
	Supply Capacity	21	16	25	32	94				
				m thu	4 10111112		4- +h-			
A	transportation pr transportation pr cost. Explain Monte C Explain the vario	oblem Carlo si	Find	percen	find in tage re	al basic solution itial basic solution duction in transportated example. ory with graph.	to the	10	M7, M3	CO2,
A. B	transportation procest. Explain Monte C Explain the vario A manufacturer produces an asse	Carlo si ous typ	mulation of consist	on with osts of and ing of	find ir tage re illustrinvento three in 2 units	ated example.	to the rtation	10	M7, M3 M6, M2	C01, C02, C03
A. B	transportation procest. Explain Monte Control Explain the various A manufacturer produces an assepart B. The process	Carlo si ous typ	mulation es of consist time for a proces	on with osts of and ing of	find in tage re illustration inventor three in 2 units	ated example. ory with graph. milling machines of part A and 3 units and 2 types of machines	to the rtation		M6,	CO2, CO3
A. B	transportation procest. Explain Monte C Explain the various A manufacturer produces an assepart B. The process follows. Part	Carlo si ous typ	mulation es of consist time for the Lather	percen on with osts of s and ing of or each	find in tage re illustration inventor three in 2 units	ated example. ory with graph. milling machines of part A and 3 units and 2 types of machines.	to the rtation		M6,	CO2, CO3
A. B	transportation procest. Explain Monte C Explain the various A manufacturer produces an assepart B. The process follows.	Carlo si ous typ	mulation es of consist time for a proces	percen on with osts of s and ing of or each	find in tage re illustration inventor three in 2 units	ated example. ory with graph. milling machines of part A and 3 units and 2 types of machines	to the rtation		M6,	CO2, CO3
A.	transportation procest. Explain Monte Content of Explain the varied Annufacturer produces an assepart B. The process follows. Part A B In order to main manufacturer follows than 40 m LPP to produce day.	has 5 embly essing	mulation in mulation is for a lather time for a	percent on with osts of sand ing of or each ssing time work cy that onger amber of the sand on the sand on the sand of the sand on the sand on the sand of the san	find in tage re illustrativents three in 2 units in part of me load or ino type than of asset	ated example. ated example. ated example. ary with graph. milling machines of part A and 3 unance of machine Milling 17 14 1 two types of machine should be of machine. Formula in 8hrs of weather machine.	which nits of ines is chines, ald run mulate orking		M6,	CO2, CO3
A	transportation procest. Explain Monte Content of Explain the varied of Explain the produce of Explain the varied of Explain the varied of Explain the varied of Explain the variety of Explai	has sembly essing than unline per maxin affections.	mulation es of consist time for Proces Lathe 12 24 niform he policiday leaum num num num num num num num num num n	percent on with osts of s and ing of or each ssing time work cy that onger amber of capaci	find in tage re illustration inventor inventor 2 units a part of me load or ino type than or of assetty of m	ated example. ated example. ated example. ary with graph. milling machines of part A and 3 units and 2 types of machine Milling 17 14 1 two types of machine shouther machine. Formula in 8hrs of weathing achine, Explore weathing, Explore weathing, Explore weathing achine, Explore weather machine, Explore weather machine, Explore weathing achine, Explore weather machine, Explore weather	which nits of ines is chines, ald run nulate orking		M6,	CO2, CO3
A.	transportation procest. Explain Monte Content of Explain the various Amanufacturer produces an assepart B. The process follows. Part A B In order to main manufacturer follower than 40 m LPP to produce day. State the factors eliminate these for Task A,B,C,	has 5 embly essing tain unlows to maxin affecti actors. H,I con D; A<	mulation es of consist time for Proces Lathe 12 24 niform he politic day lenum num num num num num num num num num	percent on with osts of sand ing of or each ssing time work by that onger amber capacitaprojects, D <f< td=""><td>find in tage re illustration inventor i</td><td>ated example. ated example. ated example. ated example. ary with graph. milling machines of part A and 3 unand 2 types of machine Milling 17 14 at two types of machines of machine. For machine. For machine. For mbly in 8hrs of we achine, Explore we precedence relation C<h; f<i;="" g<i.<="" td=""><td>which nits of ines is chines, ald run mulate orking</td><td></td><td>M6,</td><td>CO2 CO3 CO1 CO2</td></h;></td></f<>	find in tage re illustration inventor i	ated example. ated example. ated example. ated example. ary with graph. milling machines of part A and 3 unand 2 types of machine Milling 17 14 at two types of machines of machine. For machine. For machine. For mbly in 8hrs of we achine, Explore we precedence relation C <h; f<i;="" g<i.<="" td=""><td>which nits of ines is chines, ald run mulate orking</td><td></td><td>M6,</td><td>CO2 CO3 CO1 CO2</td></h;>	which nits of ines is chines, ald run mulate orking		M6,	CO2 CO3 CO1 CO2
A	Explain Monte C Explain Monte C Explain the vario A manufacturer produces an assepart B. The procas follows. Part A B In order to main manufacturer fol more than 40 m LPP to produce day. State the factors eliminate these f Task A,B,C,	has sembly essing than unline per maxin affections. H,I con D; A<	Proces Lathe 12 24 niform he policed day leading the enstitute E; B <fork, fine<="" td=""><td>on with osts of sand ing of or each ssing time work cy that onger capacian project a project p</td><td>find in tage re illustration inventor i</td><td>ated example. ated example. ated example. ary with graph. milling machines of part A and 3 una 2 types of machine Milling 17 14 a two types of machine shoulther machine. Formula in 8hrs of weather the precedence relations are precedence relations.</td><td>which nits of ines is chines, ald run mulate orking</td><td>10</td><td>M6, M2</td><td>CO2 CO3 CO1 CO2</td></fork,>	on with osts of sand ing of or each ssing time work cy that onger capacian project a project p	find in tage re illustration inventor i	ated example. ated example. ated example. ary with graph. milling machines of part A and 3 una 2 types of machine Milling 17 14 a two types of machine shoulther machine. Formula in 8hrs of weather the precedence relations are precedence relations.	which nits of ines is chines, ald run mulate orking	10	M6, M2	CO2 CO3 CO1 CO2
A	transportation procest. Explain Monte Content of Explain the various Amanufacturer produces an assepart B. The process follows. Part A B In order to main manufacturer follower than 40 m LPP to produce day. State the factors eliminate these follows A Content of Task A,B,C, is as follows A Content of Task A,B,C,	has sembly essing affections. H,I con D; A<	mulation es of consist time for Proces Lathe 12 24 niform the politic day long the entitute E; B <fork, day<="" find="" opect="" td=""><td>on with osts of sand ing of or each ssing time work cy that onger capacian a project of the proj</td><td>find in tage re illustration inventor i</td><td>ated example. ated example. ated example. ated example. ary with graph. milling machines of part A and 3 una 2 types of machine Milling 17 14 a two types of machine shouther machine. Formula in 8hrs of we achine, Explore we precedence relation C<h; critical="" f<i;="" find="" g<i.="" in="" in<="" particular="" shouther="" td="" the="" tion,=""><td>which nits of ines is chines, ald run mulate orking</td><td>10</td><td>M6, M2</td><td>CO2, CO3</td></h;></td></fork,>	on with osts of sand ing of or each ssing time work cy that onger capacian a project of the proj	find in tage re illustration inventor i	ated example. ated example. ated example. ated example. ary with graph. milling machines of part A and 3 una 2 types of machine Milling 17 14 a two types of machine shouther machine. Formula in 8hrs of we achine, Explore we precedence relation C <h; critical="" f<i;="" find="" g<i.="" in="" in<="" particular="" shouther="" td="" the="" tion,=""><td>which nits of ines is chines, ald run mulate orking</td><td>10</td><td>M6, M2</td><td>CO2, CO3</td></h;>	which nits of ines is chines, ald run mulate orking	10	M6, M2	CO2, CO3
A	Explain Monte C Explain Monte C Explain the various A manufacturer produces an assepart B. The produces as follows. Part A B In order to main manufacturer follows than 40 m LPP to produce day. State the factors eliminate these f Task A,B,C,s is as follows A< Draw the project Refer the follow Task: A	has sembly essing affection actors. H,I con in g pro	Proces Lathe 12 24 niform he policed day leading the E; B <fork, c="" da="" find="" i<="" piect="" td="" =""><td>work cy that onger capaci</td><td>find in tage re illustration inventor i</td><td>ated example. ated example. ated example. ary with graph. milling machines of part A and 3 upon 2 types of machine Milling 17 14 14 1 two types of machine shouther machine. Formula in 8hrs of we achine, Explore we precedence relation. C<h; critical="" f<i;="" find="" g<i.="" parts.<="" td="" tion,=""><td>which nits of ines is chines, ald run nulate orking ways to onship ath.</td><td>10</td><td>M6, M2</td><td>CO2 CO3 CO1 CO2</td></h;></td></fork,>	work cy that onger capaci	find in tage re illustration inventor i	ated example. ated example. ated example. ary with graph. milling machines of part A and 3 upon 2 types of machine Milling 17 14 14 1 two types of machine shouther machine. Formula in 8hrs of we achine, Explore we precedence relation. C <h; critical="" f<i;="" find="" g<i.="" parts.<="" td="" tion,=""><td>which nits of ines is chines, ald run nulate orking ways to onship ath.</td><td>10</td><td>M6, M2</td><td>CO2 CO3 CO1 CO2</td></h;>	which nits of ines is chines, ald run nulate orking ways to onship ath.	10	M6, M2	CO2 CO3 CO1 CO2
A. A.	transportation procest. Explain Monte Content of Explain the varied Annufacturer produces an assepart B. The process follows. Part A B In order to main manufacturer follows than 40 m LPP to produce day. State the factors eliminate these follows A Content of Explain as follows A Co	has sembly essing that in permaxin affection actors. H,I con D; A = 13	mulation es of consist time for time for time for the policies day long the matitute E; B <fork, day="" find="" for="" fork="" fork,="" long="" oject="" policies="" td="" the="" the<=""><td>work cy that onger capaci a proje ta.</td><td>find in tage re illustration inventor i</td><td>ated example. ated example. ated example. ated example. ary with graph. milling machines of part A and 3 una 2 types of machine Milling 17 14 a two types of machine shouther machine. Formula in 8hrs of we achine, Explore we precedence relation C<h; critical="" f<i;="" find="" g<i.="" in="" in<="" particular="" shouther="" td="" the="" tion,=""><td>which nits of ines is chines, and run mulate orking ways to conship ath.</td><td>10</td><td>M6, M2</td><td>CO2 CO3 CO1 CO2</td></h;></td></fork,>	work cy that onger capaci a proje ta.	find in tage re illustration inventor i	ated example. ated example. ated example. ated example. ary with graph. milling machines of part A and 3 una 2 types of machine Milling 17 14 a two types of machine shouther machine. Formula in 8hrs of we achine, Explore we precedence relation C <h; critical="" f<i;="" find="" g<i.="" in="" in<="" particular="" shouther="" td="" the="" tion,=""><td>which nits of ines is chines, and run mulate orking ways to conship ath.</td><td>10</td><td>M6, M2</td><td>CO2 CO3 CO1 CO2</td></h;>	which nits of ines is chines, and run mulate orking ways to conship ath.	10	M6, M2	CO2 CO3 CO1 CO2

)5B	follows	e estimates in v	veeks for PERT netwo	rk of project are as	10	M5	CO1.
	Activity	to	tm	tp		î	COS
	1-2	1	3	9	ĺ	1	
	1-3	2	<i>"</i> 1	9			4
	1-4	3	9	10			
	2-5	2	4	7			
	3-5 4-6	3	7	16			
	5-6	5	8 9	10		1	
	1		K, Find critical path	17		Ť	İ
6A	Compute What is t week ear Derive as	the standard de the probability lier than expected expression for	viation and variance of that the project will be ed time or Economic Order Qua	completed atleast 2 antity of the (Basic	10	M3,	CO2
	model) of	f inventory. Sta	te the purpose of keepin	g the invertory.			CO4
6B	A compa	any invests in	advertisement in its	12 units.Advertise	10	Ml	CO1
	unit with dollars.		ne) for the data, and pred investment. All figure Advertise	s are in millions of Sales Revenue			
			investment in Dollars (x)	in Dollars (y)			
	1		11	0.20			
	2		6	0.14			
	3		10	0.17			
	4		9	0.17			
	5		19	0.31			
	6		20	0.33			
	7		21	0.29			
	8		22	0.26	1		1
	9		22	0.30			
	1	0	22	0.32			
	1	1	23	0.31			
	1	2	23	0.32			
			nethod used in Sales/	Demand forecasting			
	with the	help of neat ske					

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

PREVIOUS End Semester Examination - DECEMBER 2022 Examinations

Program: BTECH (MECHANICAL ENGG.)

Course Code: PC-BTM606

Course Name: CAD/CAM/CIM

Duration: 3hrs

Maximum Points: 100

Semester: VI

Notes:

Solve any five questions

Figures to the right indicate full marks

Assume suitable data wherever necessary

Q.No.	Questions	Points	со	BL	PI
Q.1 (a)	Derive the transformation Matrix for rotation about arbitrary axis	[12]	1	1	3.2.1
(b)	Explain the properties of Bezier & Bspline curves with neat sketches	(08)	2,4	3	5.2.1
Q.2 (a)	Triangle PQR has vertices as P(2,4), Q (4,6) and R (2,6). it is desired to reflect through an arbitrary line L whose equation is y=0.5x+2. calculate the new vertices of the triangle.	[80]	2	3	3.2.1
(b)	Explain various Geometric modeling techniques in CAD, along with neat figures	[80]	1	1	3.2.1
(c)	Explain, With code & example the following A] Tool Length Compensation B] Tool Nose Radius Compensation	[04]	3	3	5.2.1
Q.3 (a)	Explain the concept of Reverse Engineering? Also explain CMM & its working with neat sketch? State the advantages & disadvantages of the same.	[12]	3	3	5.2.1
(b)	Write a short note on Computer Integrated Manufacturing (CIM)	[80]	2,3,4	1	3.2.1
Q.4 (a)	Explain 5 G-Codes & 5 M-Codes with example	[08]	4	3	5.2.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai –400058

PREVIOUS End Semester Examination - DECEMBER 2022 Examinations

(b)	Explain the working principle of velocity & position feedback in CNC machines with neat sketches?	[12]	1	2	5.2.1
Q.5 (a)	Explain the following 1] Z-buffer Algorithm 2] Gourad Shading Algorithm	[10]	4	3	5.2.1
(b)	Write a C++ Program for 1] Bresanhams line and 2] Bresenhams Circle Algorithm	[10]	4	3	5.2.1
Q.6 (a)	Explain Computer Aided Process planning system with neat sketch?	[10]	1	2	5.2.1
(b)	Explain Group Technology with neat figures	[10]	1	2	5.2.1
7	Write Short Notes on (Any Three) Object Oriented Databases (OODB) Concurrent Engineering Augmented Reality Artificial Intelligence in Design Graphics Standards Structured Query Language (SQL)	[20]	3,4	2	5.2.1, 3.2.1

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai – 400058

PREVIOUS SEMESTER EXAMINATION DECEMBER 2022 EVEN SEMESTER COURSES

Program: TY BTech: (Mechanical Engineering)
Course Code: PC-BTM 611
Course Name: COMPUTATIONAL METHODS

Duration: 3 Hours
Maximum Points: 100
Semester: VI

Notes:

- Question no.1 is compulsory. Answer any FOUR (04) from remaining six questions,
- Answers to all sub questions must be grouped together.
- Figures to the right of question statements are points, course outcome and question level as per Blooms taxonomy.
- Make any suitable assumption if needed with proper reasoning.

). No.		Points	CO	BL
1.	(A) Given the initial value problem $\frac{dy}{dx} = x + y$, $y(0) = 0$. Find the value of y	10	1	2
9	approximately for $x = 1$ by Euler method in five steps. Compare the result with the exact value which is given by $y = e^{\lambda} - x - 1$	1 1		
	(B) Explain predictor-corrector methods. Name any two method with their		1	4,1
_	generic mathematical expression	10	2	3
2.	(A) A ball at 1200K is allowed to cool down in air at an ambient temperature of 300K. Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given by	12	4	3
	$\frac{d\theta}{dt} = -2.2067 \times 10^{-12} \left(\theta^4 - 81 \times 10^8 \right), \theta(0) = 1200K$	100		
	Find the temperature at $t = 480$ seconds using Runge-Kutta 4th order method.			
	(B) A solid cube of dimension L is originally at a temperature T_0 . The cube is then dropped into a large bath where the cube rapidly settles flat on the bottom. The fluid in the bath provides convective heat transfer coefficient $h(W/m^2K)$ from the fluid at constant temperature T_{∞} . Analyze the case and answer following.	8	1	1,4
	 (a) Develop a mathematical model to obtain transient temperature of cube with all significant assumptions. (b) List initial condition and show boundary condition with appropriate sketch. (c) Formulate for a numerical calculation and state the numerical techniques 			
	which can used to capture transient variation of cube temperature.	بغدي	_	
3.	(A) A chip of size A (face) is mounted on a substrate through an adhesive of thickness 1 mm. The top surface is exposed to coolant flow at T_f and other side surfaces are insulated. The substrate is at constant temperature Ts. The thermal conductivity of adhesive, $k(T) = k_0 + 0.2T^2$. Develop a mathematical model to	12	2	4,1
	determine the time variation of chip temperature and its steady state temperature. List all reasonable assumptions.			
	(B) Derive Simpson's 1/3rd Rule of numerical integration using the Lagrange interpolating polynomial.	8	1	3

4. (A) Solve the following system of equations using 12 3 2.4 (a) Jacobi's iteration method, and (b) Gauss-Seidel iteration method. $10x_1 - 2x_2 - x_3 - x_4 = 3$ $-2x_1 + 10x_2 - x_3 - x_4 = 15$ $-x_1 - x_2 + 10x_3 - 2x_4 = 27$ $-x_1 - x_2 = 2x_3 + 10x_4 = -9$ Formulate the problem for iterative solution of under both method and show the progress of solution till the convergence occurs with suitable convergence criterion. 1,2 3 8 **(B)** Use Newton-Raphson method to find root of $2 \sin x = x$ 5. (A) An outcome of experimental investigation is depicted in following table in 2 2,3 12 the form of input variable and output f(x). 7 10 f(x)3 31 69 131 351 1011 (a) Construct Newton's forward divided difference table and develop interpolating polynomial. (a) Predict maximum order of polynomial through the table of divided difference. (b) Compare the values obtained from two quadratic polynomial using any two different data set of three, for f(4.5), f(8) and the second derivative of f(x) at x=3.2.4 (B) Develop a mathematical model to estimate the variation of temperature of a 8 cylindrical pin fin which convect heat to surrounding maintained at temperature Ta Use distributed parameter model for analysis. 12 2 6. 3,4 (A) Compute the values of $I = \int_{0}^{1} \frac{1}{1+x^2} dx$ correct to three decimal places. Solve it for $\Delta x = 0.5$, 0.25 and 0.125 using (a) Trapezoidal method, and (b) 1/3 Simpson formula (B) Solve following system of equation by LU decomposition 2x + 3y + 2 = 92 2 8 x + 2y + 3z = 63x + y + 2z = 8Compare the result with Gauss Elimination and Matrix Inversion method. (A) Radiation intensity of a radioactive material is found to vary exponentially 4 7. 12 with time. Following table shows an experimental data recorder for radiation intensity and time involved. 0 Τ (hrs) 1.000 0.891 0.708 0.562 0,447 0.355 The relative intensity is related to time by the equation,

2

8

1

Find: a) The value of the regression constants, b) Radiation intensity after 24 hours.

of an appropriate example.

(B) What do you understand by well-conditioned system and ill conditioned system? Which parameters are used to recognize them? Illustrate with the help

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai – 400058

PREVIOUS SEMESTER EXAMINATION - DECEMBER 2022

Program: B.Tech. in Civil/Electrical/Mechanical Engg.

Course Code: OE-BTM614

Course Name: Introduction to Optimization Methods

Duration: 3 Hours

Max. Points: 100

Semester: VI

Notes:

1. Question no. 1 is compulsory. Solve any 4 of the remaining 6 questions.

2. Refer Annexures for additional information. Assume suitable data if necessary.

Q. No.	Questions	Points	co	BL	Mod ule
COMPULSORY O	A) A snack food manufacturer markets two kinds of mixed nuts, labeled P and Q. Mixed nut P contains 10% almonds, 20% cashew nuts, 20% walnuts and 50% peanuts. Mixed nut Q contains 20% almonds, 10% cashew nuts, 30% watnuts and 40% peanuts. A customer wants to use mixed nuts P and Q to prepare a new mix that contains at least 3 kg of almonds, 6 kg of cashew nuts, 2 kg of walnuts, for a party. Mixed nuts A and B cost Rs. 800 and Rs.1000 per kg, respectively.	(5)	3	4	1
	Formulate the optimization problem to determine the amounts of mixed nuts P andQ to be used to prepare the new mix at a minimum cost. State design variables, objective function and constraints. B) It is required to minimize the following function using Box's evolutionary algorithm. $f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$ Consider starting point $\bar{X}^{(0)} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, size parameter $\Delta = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and termination parameter $\varepsilon = 0.1$. Perform one iteration of the Box's	(5)	3	4	4
	 evolutionary algorithm. What will happen if you choose Δ to be too small or too large? C) Give classification of integer programming problems. Why integer problems can not be solved as real-value problems? Explain the features of the full or exhaustive enumeration. D) What are non-traditional algorithms? List a few of these. Describe characteristics of evolutionary algorithms and explain their advantages over the other methods of optimization. 	(5)	1	2	5

Q2	A) Consider a multivariate function $f(\bar{X})$ as given below. Develop an	(5)	3	3	.5
	expression for $f(\bar{X} + \bar{d})$ in terms of Gradient and Hessian matrix of				
	the function. \bar{d} is a small arbitrary vector from \bar{X} .				
	$f(x_1, x_2) = 5x_1^2x_2 - 2\frac{x_1^2}{x_2}$				
	Using the expression for $f(\bar{X} + \bar{d})$, explain how the nature of				
	Hessian matrix can be used to determine maxima/minima of the				
	function.				
	B) Perform one iteration of bisection method to find maxima of		3	3	1
	function $f = x \sin x + \frac{x^2}{15}$ in the range (5,10). Consider x in degrees.	(5)	ر	,	7
	C) Answer following questions related to Genetic Algorithm (GA).				
	• Find length of the binary string to represent a variable up to	(10)	2	4	6,7
	4 decimal accuracy in the range of 1 to 11.			İ	
	The following table gives information about the population				
	existing at a particular iteration of GA.				
	Sr. Binary string of Fitness			Ì	
	No. member				
	1 01010 85			1	
	2 10001 60				
	3 10100 40				
Ì	4 11011 30 5 11110 10		l		
	The random number generated by the proportionate				
	reproduction operator is 0.5. Which member will get				
	selected?				
	• For the population shown above, let member no. 3 and 4 be				
	parents. Considering the position of crossover bit as 4,				
	generate the offspring string.				
	• Provide the new string if the offspring generated in the				
	previous step is mutated at 2 nd bit.				
- }	A Python code (partial) for implementing GA is provided in				
	Annexure II. Analyze the code and answer the following.		·		
	o In roulette wheel function, explain how and where				
	(line numbers) the cumulative probability of each			 	
	specimen is calculated.				
	 Explain significance of code written in line numbers 41 and 42. 		1		
	Ending in it is a free of the might in line number				
- [56. How it may be used in the subsequent hidden code				
ļ	to cause mutation?				
23	A) Discuss the Karush-Kuhn-Tucker (KKT) optimality conditions for	(5)	1	2	2
·	obtaining the stationary point for a general optimization problem.				
	B) Describe the Simplex method using a detailed flowchart for the	(5)	3	2	3
	algorithm.				
	C) Perform two iterations of Particle Swarm Optimization (PSO)	(10)	3	3	6
	algorithm to find the minima of following function in the range		ļ		
	(2,4). Show detailed calculations for a typical case.	<u> </u>	<u> </u>		<u> </u>

	$f(x) = x^2 + \frac{54}{x}$				
	• Use two particles with initial positions $x_1(0) = 2.5$ and $x_2(0) = 3.5$.	-			
	• Inertial weight: $\theta = 1$		ł		
	• Individual and group learning rates: $c_1 = c_2 = 2$				
	• Random number for individual particle, $r_1 = 0.5$ (both		1		
	iterations)				
	• Random number for group of particles, $r_2 = 0.3$ (both				
	iterations)	(5)	,	2	
Q4	A) Describe the graphical method for optimization with a suitable	(5)			-
	illustrative example. Discuss the advantages and disadvantages of]	Ì	1	
1	the method. B) There are certain computational aspects which are important during				_
	the implementation of optimization algorithms. Explain the	(5)	2	2	7
	importance of following aspects: (i) Information to be analyzed				
	about the nature of problem before selecting a suitable software tool,		Į.		
	(ii) Need of scaling the variables, (iii) Basis vector method to reduce				
	size of problem.		3	3	5
	C) Explain the analogy between the physical process of annealing of	(5)	اد	3	,
	metals and the process of optimization using Simulated Annealing				
	(SA) algorithm. Describe the Metropolis criterion employed in SA.				
	Consider an iteration of SA where the value of temperature is 500.				
	The objective function values for two successive points x_1 and x_2				
	are 200 and 400 respectively. The random number generated to apply the Metropolis criterion is 0.1. Determine if x_1 would be				
	accepted as an optimal point during this iteration.				
	D) Explain the BBM algorithm for integer programming problems with	(5)	3	2	5
	a flowchart.	` _			
Q5	A) Minimize the following function using KKT method. $(x_1 - 5)^2 + (x_2 - 5)^2$	(10)	3	3	2
	Subject to				
	$x_1 + x_2 - 3 \le 0$				
	B) Perform one iteration of the basic random search algorithm to solve	(5)	3	3	4
	the following unconstrained optimization problem.				
	$f(x_1, x_2) = (x_1 + 2x_2 - 7)^2 + (2x_1 + x_2 - 5)^2$		İ	1	İ
	Identify the new initial point and the new range at the end of this				
	iteration. Consider the following parameters:				
	 Number of random samples per iteration = 3 Initial point: x̄⁰ = (2,1), Initial range: z̄⁰ = (1, 1) 				
	• Initial point: $x' = (2,1)$, initial range, $z' = (1,1)$				
	 Range reduction factor: 0.3 Generate random numbers using the scientific calculator. 				1
	C) Describe different ways of classifying the optimization problems.	(5)	1	2	1
!	Provide at least one example for each type of the problem.	(5)			
Q6	A) Use Lagrange multiplier method to minimize:	(5)	3	3	2
70	$f(x_1, x_2) = (x_1 - 2)^2 + (x_2 + 1)^2$ subject to $2x_1 + 3x_2 - 4 = 0$				
	B) Perform two iterations of Simplex method to find the optimum	(10)	3	3	3
	solution for the following problem.	(10)	3		
1	$Minimize f(x_1, x_2) = -5x_1 - x_2$				

	Subject to				٠
	$2x_1 + x_2 \le 1$		14]	
	$-x_1+2x_2\leq 2$				
	$x_1, x_2 \ge 0$	(5)		1	
	C) Describe the Golden section method of optimization with a suitable	(3)	T	2	4
	illustrative example.				
Q7	A) What is a standard form of a linear programming (LP) problem?	(5)	3	2	3
	Explain significance of basic/non-basic variables and constants in				1
	the canonical form of the LP problem. How does one obtain the				
	basic solution to a LP problem?				
	B) Perform one iteration of unidirectional search using exhaustive	(8)	3	3	4
	search method to minimize following function.	. ,			ł
	$f(x_1, x_2) = -8x_1 - 12x_2 + x_1^2 + 2x_1x_2 + x_2^2$				İ
	Consider starting point as $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, search direction $\vec{s} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and step				
	size of 1. Give a recommendation for selecting the search direction				1
	at a given point.				-
	C) An optimization problem is defined as follows.	(7)	4	3	7
	Minimize $f(x_1, x_2) = (x_1 - 5)^2 + (x_2 - 5)^2$		1		
	Subject to $g_1(x_1, x_2): x_1 + x_2 - p \le 0$				
	For $p=5$, optimal solution is $x_1^* = 2.5$, $x_2^* = 2.5$. Obtain the			1	
	sensitivity of $f(x_1, x_2)$ with respect to p.				

ANNEXURE I (Sensitivity equations using KKT formulation)

$$\frac{df(\overline{X})}{dp} = \frac{\partial f(\overline{X})}{\partial p} + \sum_{i=1}^{n} \frac{\partial f(\overline{X})}{\partial x_i} \frac{\partial x_i}{\partial p}$$

$$\begin{bmatrix} [P]_{n\times n} & [Q]_{n\times q} \\ [Q]_{q\times n} & [0]_{q\times q} \end{bmatrix} \begin{Bmatrix} \frac{\partial x_i}{\partial p} \Big|_{n\times 1} \\ \frac{\partial \lambda_j}{\partial p} \Big|_{q\times 1} \end{Bmatrix} + \begin{Bmatrix} [a]_{n\times 1} \\ [b]_{q\times 1} \end{Bmatrix} = \begin{Bmatrix} [0]_{n\times 1} \\ [0]_{q\times 1} \end{Bmatrix}$$

$$\begin{split} P_{ik} &= \frac{\partial^2 f(\bar{X})}{\partial x_i \partial x_j} + \sum_{j \in J_1} \lambda_j \frac{\partial^2 g_j(\bar{X})}{\partial x_i \partial x_k} & J_1 \text{ is the set of active constraints} \\ Q_{ij} &= \frac{\partial g_j(\bar{X})}{\partial x_i} & j \in J_1 \\ \alpha_i &= \frac{\partial^2 f(\bar{X})}{\partial x_i \partial p} + \sum_{j \in J_1} \lambda_j \frac{\partial^2 g_j(\bar{X})}{\partial x_i \partial p} & j \in J_1 \\ b_j &= \frac{\partial g_j(\bar{X})}{\partial p} & j \in J_1 \end{split}$$

ANNEXURE II: Genetic Algorithm (Partial Code)

```
def choice_by_roulette(sorted_population, fitness_sum):
1
       offset = 0
2
       normalized_fitness_sum = fitness_sum
3
4
       lowest_fitness = apply_function(sorted_population[0])
5
       draw = random.uniform(0, 1)
6
7
       accumulated = 0
8
       for individual in sorted_population:
9
           fitness = apply_function(individual) + offset
10
           probability = fitness / normalized_fitness_sum
11
           accumulated += probability
12
13
           if draw <= accumulated:
14
                return individual
15
16
   def crossover(individual_a, individual_b):
17
       maxbits=11 # accommodate (-6.00,+6.00) with 2 decimal accuracy
18
19
       xa = individual_a["x"]
20
       ya = individual_a["y"]
21
       xb = individual_b["x"]
 22
       yb = individual_b["y"]
 23
        #convert real numbers with 2 decimals
 24
       xa_bin = convert_real_to_binary_list(xa,maxbits)
 25
        ya_bin = convert_real_to_binary_list(ya,maxbits)
 26
        xb_bin = convert_real_to_binary_list(xb,maxbits)
 27
        yb_bin = convert_real_to_binary_list(yb,maxbits)
 28
```

```
29
       # generating the random number to perform crossover
30
       k = random randint(1, maxbits)
31
       # interchanging the genes
32
       for i in range(k, maxbits):
33
           xa_bin[i] = xb_bin[i]
34
       # generating the random number to perform crossover
35
       k = random.randint(1, maxbits)
36
       # interchanging the genes
37
       for i in range(k, maxbits):
38
           ya_bin[i] = yb bin[i]
39
40
       x_new = int("".join(str(i) for i in xa_bin),2)/100.0
41
       y_new = int("".join(str(i) for i in ya_bin),2)/100.0
42
43
       return {"x": x_new, "y": y_new}
44
45
46 def mutate(individual):
      maxbits=11
47
48
      x = individual["x"]
49
      y = individual["y"]
50
51
       #convert real numbers with 2 decimals
52
       x bin = convert_real_to_binary_list(x,maxbits)
53
      y bin = convert_real_to_binary_list(y,maxbits)
54
55
       p mut=0.005 # probability of mutation
56
57
        >>> code hidden <<<
58
59
       next_x = int("".join(str(i) for i in x_bin),2)/100.0
60
       next_y = int("".join(str(i) for i in y_bin),2)/100.0
61
       lower_boundary, upper_boundary = (-6, 6)
62
       # Guarantee we keep inside boundaries
63
       next_x = min(max(next_x, lower_boundary), upper_boundary)
64
       next y = min(max(next_y, lower_boundary), upper_boundary)
65
       return {"x": next_x, "y": next_y}
66
```


Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

PREVIOUS SEM END SEMESTER EXAMINATION, DECEMBER-2022

Program: B. Tech. in Mechanical Engineering

Class: Third Year B. Tech. (Mechanical)

Course code: PEC-BTM 538

Course: Industrial Management and Enterpreneurship

Date: 30/12/2022

Duration: 3 Hr.

Max. Points: 100

Semester: VI

Instructions:

• Attempt ANY 05 questions.

• Draw neat diagram /Sketch/Block Diagram wherever necessary.

• Use Graph paper for drwaing Break-Even Chart

• Legible hand writting, proper figures and tidy work carry weightage.

• Answers to the questions should be Brief and Specific.

Q.	Question			ده	1	
N.		Points	8	Module	BL	PI
1	A) Discuss: 'Is Management a science or an art?' Explain: Functions of a Manager in an organisation.	(10)	Ì	1	II, V	9.1.1
	B) Differentiate: Between Management and Administration. Explain: Process of management in an organisation.	(10)	1	1	II	9.1.1
2.	A) Explain: Motivation, Types and Techniques of motivation. Illustrate: With suitable example of practice in specific industry.	(10)	1	2	II, V	9.1.1
	B) Explain: Scope and importance of Human Resource Management in various functional areas of an organization. Illustrate: With suitable examples.	(10)	1	2	II, V	9.1.1
3.	A) Explain: 'Break-Even Analysis is as an effective managerial tool in an organisation'. Describe: assumptions and limitations in breakeven analysis.	(10)	2	3	II, III	9.1.1
	B) Explain: Difference between Cost Control and Cost Reduction. Describe: Techniques for Cost Control and Programmes for Cost Reeduction in an organisation.	(10)	2	3	11	9.1.1
4	A) Explain: Significance, sources and uses of Fixed Capital and Working Capital for an industrial organisation.	(10)	2	4	II	9.1.1
	B) Explain: Meaning, significance and types of assets and liabilities of an industrial organisation with suitable examples.	(10)	2	4	Π	9.1.1
5	A) Define: Enterpreneurship. Explain: How 'An enterpreneur differs from a Manager?' by describing entrepreneurial characteristics.	(10)	3	5	I,II	9.1.1
	B) Explain: Need for promotion of enterpreneurship and small business especially in country like India.	(10)	3	5,6	II	9.1.1
6	A) Explain: Functional areas of a small business enterprise in details.B) Explain: Tangible and intangible benefits of implementation of	(10) (10)	3 4	6 7	II II	9.1.1
	ERP in industry.					9.1.1

7	Expalin: ANY THREE of the following in brief:	(20)	1,2	1,2	II	9.1.1
	A) Principles of Management	, ,	4	3,4]
	B) Maslow's Hierarchy of Needs Theory		1	7		İ
	C) Types of Cost					1
	D) Financial Statements of an organization					
	E) ERP-II					

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

Previous Year End Semester - December 2022 Examinations

Program: T.Y.B. Tech. (Mech. Engg.) Sem V

Duration: 03 Hrs

Course Code: PE-BTM539

Maximum Points: 100

Semester: VI

Course Name: Professional Elective-II, Additive Manufacturing

Notes:

1. Question number 1 is compulsory

2. Solve any four questions from question number 4 to 7.

3. If necessary assume suitable data with justification

4. Draw neat labeled sketches wherever required.

Q. No.	Questions	Points	со	BL	M.N.
1	(i) Bulk Lithography (ii) Laminated Object Manufacturing (iii) Selective Inhibition Sintering Part is to be developed using compatible material for above mentioned processes. State (i) Compatible materials for the above processes. (ii) Part orientation in developing part with above processes. (iii) Explain process plan with neat schematic diagram of above processes iv) Support process plan with at least three critical sliced sections of part geometry (Note: Answer shall clearly show slicing place, sliced geometry, hatched section etc.).	20	1, 2,3,4	6	1 to 7
2 (A)	Describe extrusion based RP systems. Discuss Fused deposition modeling (FDM) process with a neat labeled diagram.	10	3	6	3,4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Previous Year End Semester - December 2022 Examinations

	Discuss various sub-systems of FDM. In one of the FDM system issues in linear scan speeds is observed due to error in software program. On investigation it is observed that X scan speed is optimum, however the Y scan (in the direction of pitch) is twice the optimum speed. Explain consequences in part fabrication. Further in case if Y scan speed would have been optimum and X scan speed being twice the optimum X scan speed, comment in which case part quality would be worst.				
2 (B)	Explain mathematical form of cured depth in ceramic or metal microstereolithograhy along with Mie theory. Explain influence of followings material properties on curing radius and cured depth i) Particle mean size ii) Particle size distribution iii) Refractive index of powder iv) Refractive index of UV curable solution v) Absorption coefficient of powder (Note: Draw rough graphs with curing radius and cured depth taken on y-axis on common graph depicting influence of materials properties. Material properties shall be on x-axis. Justify each of the characteristics).	10	1	4	3,5
3 (A)	Explain stereolithography with neat sketches	10	2	5	3,4,5
3 (B)	With neat sketches explain constraint surface microstereolithography (MSL)? Discuss advantages and issues with constraint surface MSL.	10	1	1	3,4,5
4 (A)	Following are the system and material property data employed for part fabrication in a scanning type Bulk Lithography system. Resin: Trimethylolpropane Triacylate (TMTPA), having critical energy 60 mJ/cm², penetration depth = 90 microns when exposed to UV light. Laser beam power=150 microwatt, Scan speed=0.7 mm/s, Gaussian half widh=6 microns, For Gaussian beam laser estimate the maximum layer thickness that can be used in layer-by-layer fabrication. Also estimate the maximum intensity at the exposure resin surface and at a distance 80 microns below free resin surface.	10	3	2	4,5
4 (B)	With neat diagram explain Laser Engineered Net Shaping process	10	1	3	5,6
5(A)	With neat sketches explain processes used to fabricate microlens arrays	10	4	4	6,7

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Previous Year End Semester - December 2022 Examinations

5(B)	With neat sketch explain shape deposition manufacturing process. Take suitable part geometry to explain processes involved in shape deposition manufacturing.	10	2	4	6,7
6(A)	Explain AM process plan with neat diagram	10	1	4	1
6(B)	Explain steps suggested by Mueller for selecting the proper type of material for additive manufacturing.	10	3	3	1,2
7(A)	Explain, stl and amf file format and its importance.	10	2	1	1,2
7(B)	What is amorphous material? Discuss its behavior on volume against Temperature diagram. List few amorphous materials used in RPT.	10	3	2	1,2

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

PREVIOUS SEMESTER EXAMINATION DECEMBER 2022

Program: B.Tech Mechanical Engineering

Course Code: PCBTM611

Course Name: Refrigeration and Air Conditioning

Tel Duration: THours

7 Maximum Points:100

Semester: VI

Notes:

1) Question no.1 is compulsory and solve any four questions out of remaining six.

2) Use of refrigerant properties and psychrometric chart is permitted.

3) Use of steam table is permitted.

4) Assume suitable data and justify the same.

5) Answers to sub-questions should be grouped together.

Q.No.	Questions	Points	СО	BL	Module No.
1(a)	Draw comfort chart and compare it with psychrometric chart.	5	3	1	6
1(b)	Compare primary refrigerants and secondary refrigerants.	5	3	1	2
1(c)	Show that coefficient of performance of refrigeration cycle working between two temperatures will be maximum when cycle is reversible.	5	1	1	1
1(d)	Define terms: (i) Humidity ratio (ii) Relative Humidity (iii) Degree of saturation (iv) Dew point temperature	5	3	1	3
2(a)	Explain actual vapour compression cycle with neat sketch of T-s and P-h diagram.	8	1	1	1
2(b)	An R-134a simple saturation cycle refrigerator operates at 40°C condenser and -16°C evaporator temperatures. Determine COP and HP/TR. If a liquid –vapour regenerative heat exchanger is installed in the system, with the suction vapour at 15°C, calculate the change in COP and HP/TR.	12	2	3	1
3(a)	Explain the process of measuring wet bulb temperature of air. Also discuss how wet bulb temperature which is not a thermodynamic property can be considered as thermodynamic property.	10	3	2	3

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

PREVIOUS SEMESTER EXAMINATION DECEMBER 2022

3(b)	Explain complete designation system of refrigerants.	10	2	2	2
4(a)	Explain Boot-strap air refrigeration cycle with T-s and schematic diagram.	10	i	2	1
4(b)	The DBT and WBT of the air are 35°C and 23°C respectively. Find the followings if total air pressure is 1.00125 bar. Calculate following without using psychrometric chart. (i) Specific humidity (ii) Relative humidity (iii) DPT (iv) density (iv) Enthalpy.	10	2	3	3
5	A building has the following calculated cooling loads: Room sensible heat gain = 310 kW Room latent heat gain = 100 kW The space is maintained at DBT of 25°C and relative humidity of 50 %. The outdoor air is at 38°C and 50% R.H. And 15 % by mass of air supplied to the building is outdoor air. If the air supplied to the space is not at temperature lower than 18°C. Find (i) Minimum amount of air supplied to space in m³/s. (ii) Volume flow rates of return air and outdoor air (iii) State and volume flow rate of air entering the cooling coil. (iv) Capacity, ADP, BPF and SHF of the cooling coil.	20	4	3	4
6(a)	Discuss mechanism of body heat loss and explain mathematical model of heat exchange between man and environment.	10	3	2	3
6(b)	Explain various types of duct design methods.	10	3	2	6
7(a)	What is three fluid refrigeration system? Explain it with neat sketch.	10	3	2	7
7(b)	Explain working of practical single effect water-lithium bromide absorption chiller with neat sketch.	10	3	2	7

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

PREVIOUS SEM END SEMESTER EXAMINATION, DECEMBER-2022

Program: B. Tech. in Mechanical Engineering

Class: Third Year B. Tech. (Mechanical)

Course code: PCC-BTM 614

Course: Internal Combustion Engines

Date: 03/01/2023 Duration: 3 Hr. Max. Points: 100

Semester: VI

Instructions:

Solve ANY O5 Questions.

Draw neat diagram /Sketch wherever necessary.

Make suitable assumptions wherever necessary and state the same.

• Legible hand writting, neat diagrams and tidy work carry weightage.

Answers to the questions should be Brief and Specific.

Q. N.	• Answers to the questions should be Brief and Special Question	Points	03	Module	BL	PI
	A) Discuss: Classification of I.C. Engines. Explain: Working of a	(10)	1	3	I,II	1.4.1
1.	four-stroke petrol engine with a neat sketch. B) Compare: S.I. and C.I. Engines on the basis of thermodynamic cycle, compression ratio, fuel used, introduction / injection of fuel and combustion of fuel. Draw: Neat sketches wherever necessary.	(10)	1	1,3	I,II	1.4.1
2.	A) Describe: Phenomenon of combustion in S.I. Engines. Draw:	(10)	3	2	I,II	1.4.1
2.	Neat p-0 diagram. Explain: Each stage of combustion. B) Explain: Working of a simple or elementary carburettor. Draw: Neat sketch. A simple jet carburettor has to supply 5 kg of air per minute. The air is at a pressure of 1.013 bar and temperature of 27°C. Calculate: The throat diameter of the choke for air flow velocity of 90 m/s. Take velocity co-efficient as 0.8. Assume the flow to be isentropic and compressible.	(10)	1,2	2	1,11 V	1.4.1
3.	A) State: Types of fuel injection system for C.I. Engines. Describe: Working, advantages and disadvantages of any one fuel injection	(10)	1,4	3	1,11	1.4.1
	system with neat sketch. B) Explain: i) Delay period ii) Diesel knock. An air standard diesel cycle has a compression ratio of 14. The pressure and temperature at the beginning of the compression stroke is I bar and 27°C. The maximum temperature in the engine during the cycle is 2500°C. Evaluate: i) Thermal efficiency and ii) mean effective pressure.		2,3	3	II, V	1.4.1
4.	1 1 1 -C Company of an IC	(10)	2,4	4	I,I	1.4.1
	B) The following data is recorded from the performance testing of a single cylinder four stroke oil engine: Cylinder bore = 150 mm engine stoke = 250 mm, indicated mean effective pressure = 7.5 bar engine speed = 420 rpm, brake torque = 217 m.N, fuel consumption	,) 2	4	V	1.4.1

	= 2.95 kg/hr, calorific value of fuel - 44000 kJ/kg, colling water flow	T		s	en'	
	rate = 0.068 kg/s, cooling water temperature rise = 45°C, specific heat					
	capacity of cooling water = 4.1868 kJ/kg.K. Evaluate: i) Mechanical		ì			
	efficiency ii) brake thermal efficiency iii) specific fuel consumption. Estimate: Heat balance for the engine in kW.					
5.	A) Discuss: Sources and nell to G	1				
٠.	A) Discuss: Sources and pollutants from I.C. Engines and their adverse effects on human life.	(07)	3	5,7	II	1.4.
		İ	-			
	B) Justify: Four stroke engines are more fuel economic and	(07)	3	1,5	V	1.4.1
	environment friendly as compared to Two stroke engines. Justify: Necessity of flue gas analysis of an I.C. Engine.					1
	C) Explain: Significant properties of first form					
	C) Explain: Significant properties of fuel for use in S.I. Engine. Justify: Fuels for S.I. engines and C.I. engines are not	(06)	3	5	II,	1.4.1
	interchangeable for their use in I.C. Engines.				V	
6.	A) State: Various types of Engine Cooling System and Compare:	(10)				
••	The advantages and disadvantages of air cooling and water cooling	(10)	1,4	6	I,II	1.4.1
	of I.C. Engines. Explain: Working of forced circulation engine					
j	cooling system with a neat diagram.	1	١,,			
	B) Justify: Necessity of lubrication and State: Various lubrication	(10)	1,4	6	I,II	1.4.1
	systems for I.C. Engines. Describe: Any one engine lubrication		}		V	
	system with a neat sketch.					
7.	Explain: ANY THREE of the following in brief:	(20)	1,3	1,2	11	1.4.1
	A) Advantages and Disadvantages of Two-Stroke Engines	(20)	1,5	3	11	1.4.1
	B) MPF1		7	4,7		
	C) Types of nozzles for C.I. Engines			7,/		
	D) Performance Characteristics of S.I. Engines					
	E) Biofuels for I.C. Engines					